Research Articles

Complete List of Published Work: https://www.ncbi.nlm.nih.gov/sites/myncbi/1zI0cltFCZnQe/bibliography/47938653/public/?sort=date&direction=ascending

Suarez-Martinez AD, Bierschenk S, Huang K, Kaplan D, Bayer CL, Meadows SM, Sperandio M and Murfee WL. A Novel Ex Vivo Mouse Mesometrium Culture Model for Investigating Angiogenesis in Microvascular Networks. (Journal of Vascular Research, accepted February 19th, 2018).

Crist AM, Lee AR, Patel NR, Westhoff, DE and Meadows SM. (2018). Vascular Deficiency of Smad4 Causes Arteriovenous Malformations: a Mouse Model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis, February 19th, DOI: 10.1007/s10456-018-9602-0.

Garay J, Piazuelo MB, Lopez-Carrillo L, Leal Y, Majumdar S, Li L,  Cruz-Rodriguez N, Serrano-Gomez S, Busso C, Schneider B, Delgado A, Bravo L, Crist A, Meadows SM, Camargo M, Wilson K, Correa P, and Zabaleta J. (2017). Increased expression of Deleted in Malignant Brain Tumors (DMBT1) gene in precancerous gastric lesions: Findings from human and animal studies. Oncotarget, 8(29):47076-47089.

Lee HW, Chong DC, Ola R, Dunworth WP, Meadows SM, Ka J, Kaartinen VM, Qyang Y, Cleaver O, Bautch VL, Eichmann A and Jin SW. (2017). Distinct requirement of Alk2/ACVR1 and Alk3/BMPR1A in Bone Morphogenetic Protein induced retina angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(4): 657-663.

Crist AM, Young C and Meadows SM. (2017). Characterization of Arteriovenous Identity in the Developing Neonate Mouse Retina. Gene Expression Patterns, 3(23-24): 22-31. doi: 10.1016/j.gep.2017.01.002.

Caprioli A, Villasenor A, Ratliff LA, Marty-Santos L, Barry D, Fletcher PJ, Fu S, Meadows SM, Karner C, Carroll T and Cleaver O. (2015). Wnt4 is essential to normal mammalian lung development. Developmental Biology, 406(2): 222-34

Barry D, Xu K, Meadows SM, Zheng Y, Norden P, Davis G and Cleaver O. (2015).  Cdc42 is required for cytoskeletal support of cell adhesion during blood vessel formation. Development, 142(17):3058-70.

Meadows SM and Cleaver O. (2015).  Annexin A3 regulates early blood vessel formation. PLoS One, 10(7):e0132580. 

Dunworth WP, Cardona-Costa J, Bozkulak EC, Fisher JC, Meadows SM, Cleaver O, Qyang Y, Ober EA, Jin S (2014). Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos. Circulation Research, 114(1):56-66.

Dellinger MT, Meadows SM, Wynne K, Cleaver O and Brekken RA (2013). Vascular endothelial growth factor receptor-2 directly regulates the development of the lymphatic vasculature. PLoS One, 8(9); e74686.

Meadows SM, Ratliff LA, Singh MK, Epstein JA, Cleaver O (2013). Resolution of defective dorsal aortae patterning in Sema3E deficient mice occurs via angiogenic remodeling. Developmental Dynamics, 242(5); 580-590.

Meadows SM, Fletcher PF, Moran C, Xu K, Neufeld G, Chauvet S, Mann F, Krieg PA, Cleaver O (2012). Integration of repulsive guidance cues generates avascular zones that shape mammalian blood vessels. Circulation Research,110(1): 34-46.

Shah AP, Nongthomba U, Kelly Tanaka KK, Denton ML, Meadows SM, Bancroft N, Molina MR, Cripps RM (2011). Cardiac remodeling in Drosophila arises from changes in actin gene expression and from a contribution of lymph gland-like cells to the heart musculature. Mechanisms of Development, 128(3-4): 222-233.

Salanga MC, Meadows SM, Myers CT, Krieg PA (Salanga and Meadows contributed equally) (2010). ETS family protein ETV2 is required for initiation of the endothelial lineage but not the hematopoietic lineage in the Xenopus embryo. Developmental Dynamics, 239(4): 1178-1187.

Meadows SM, Salanga MC and Krieg PA (2009). Kruppel-like factor-2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development. Development, 136(7): 1115-25.

De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarwal P, Visel A, Xu S, Pennacchio LA, Dubchack I, Krieg PA, Stainier DY and Black BL (2008). Combinatorial regulation of endothelial gene expression by Ets and Forkhead transcription factors. Cell, 135(6): 1053-1064.

Meadows SM, Warkman AS, Salanga MC, Small EM and Krieg PA (2008). The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression. Proceedings of the National Academy of Sciences USA, 105(5): 1545-50.

 Garriock RJ, Warkman AS, Meadows SM, D’Agostino S and Krieg PA (2007). Census of vertebrate Wnt genes: Isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a and Wnt16. Developmental Dynamics, 236(5): 1249-1258.

Garriock RJ, Meadows SM and Krieg PA (Garriock and Meadows contributed equally) (2005). Developmental expression and comparative genomic analysis of Xenopus cardiac myosin heavy chain genes. Developmental Dynamics, 233(4): 1287-1293.

Kelly KK, Meadows SM and Cripps RM (2002). Drosophila MEF2 is a direct regulator of Actin57Btranscription in cardiac, skeletal and visceral muscle lineages. Mechanisms of Development, 110(1-2): 39- 50.

Lovato TL, Meadows SM, Baker PW, Sparrow JC and Cripps RM (2001). Characterization of muscle actin genes in Drosophila reveals significant complexity in skeletal muscle types. Insect Molecular Biology, 10(4): 333-40.


Reviews


Meadows SM and Cleaver O (2014). Vascular patterning: coordinated signals keep blood vessels on track. Current Opinion in Genetics and Development, (accepted).

Meadows SM and Cleaver O (2012). Vasculogenesis: Making Pipes for the Cardiovascular Plumbing. Current Angiogenesis, 1(3): 215-225

Meadows SM, Myers CT, Krieg PA. (Meadows and Myers contributed equally) (2011). Regulation of endothelial cell development by ETS transcription factors. Seminars in Cell and Developmental Biology, 22(9): 976-984.

Warkman AS, Meadows SM, Small EM, Cox CM, and Krieg PA (2004). Cardiovascular genomics: the promise of Xenopus. Drug Discovery Today: Disease Models, 1(3): 249-55.